Jump to content
Sign in to follow this  
Zekrom

IMO 2013 NO 6

Recommended Posts

Misalkan $n \geq 3$ adalah bilangan bulat, dan perhatikan suatu lingkaran yang ditandai dengan $n+1$ titik-titik yang berjarak sama antar dua titik bersebelahan. Anggap semua pelabelan titik-titik itu dengan bilangan $0$, $1$, $2$, ... , $n$ sehingga masing-masing label digunakan tepat satu kali; dua pelabelan tersebut dipandang sama jika salah satu bisa diperoleh dari yang lain menggunakan rotasi pada lingkaran itu. Suatu pelabelan disebut $cantik$ jika, untuk sebarang empat label $a<b<c<d$ dengan $a+d=b+c$, talibusur yang menghubungkan titik-titik yang dilabeli $a$ dan $d$ tidak memotong talibusur yang menghubungkan titik-titik yang dilabeli $b$ dan $c$.

Misalkan $M$ adalah banyaknya pelabelan $cantik$, dan misalkan $N$ adalah banyaknya pasangan terurut bilangan bulat positif $(x,y)$ sehingga $x+y \leq n$ dan $gcd(x,y)=1$. Buktikan bahwa 

 

$M=N+1$

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

×