Jump to content
Sign in to follow this  

IMO 2011 NO 3

Recommended Posts

Misalkan $f : \mathbb{R} \rightarrow \mathbb{R}$ adalah suatu fungsi bernilai real terdefinisi pada himpunan bagian real memenuhi 


$f(x+y) \leq y f(x) +f(f(x))$


untuk semua bilangan real $x$ dan $y$. Buktikan bahwa $f(x)=0$ untuk semua $x \leq 0$. 

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this