akun 0 Report post Posted July 5, 2017 Misalkan \(A(n)\) menyatakan jumlah dari barisan \(a_{1}\geq a_{2}\geq \cdots \geq a_{k}\) dari bilangan bulat positif dimana \(a_1+a_2+\cdots +a_k=n\) dan setiap \(a_i+1\) adalah pangkat dari dua\((i=1,2,\cdots ,k)\). Misalkan \(B(n)\) menyatakan jumlah dari barisan \(b_{1}\geq b_{2}\geq \cdots \geq b_{m}\) dari bilangan bulat positif dimana \(b_1+b_2+\cdots +b_m=n\) dan setiap pertidaksamaan \(b_{j}\geq 2b_{j+1}\) berlaku \((j=1,2,\cdots ,m-1)\). Buktikan bahwa \(A(n) = B(n)\) untuk semua bilangan bulat positif \(n\). Share this post Link to post Share on other sites