Jump to content
Sign in to follow this  
erlang

P7 IMC 2017

Recommended Posts

Misalkan $p(x)$ adalah polinomial non-konstan dengan koefisien real. Untuk setiap bilangan asli $n$, misalkan $q_n(x)=(x+1)^np(x)+x^np(x+1)$. Buktikan kalau hanya ada hingga buah $n$ sehingga semua akar dari $q_n(x)$ adalah bilangan real.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

×