Jump to content

Recommended Posts

Untuk menuliskan notasi matematika di forum ini, anda harus menuliskannya di antara dua tanda $\$$. Sebagai contoh, $\$$a^2+b^2$\$$ akan menghasilkan $a^2+b^2$ atau $\backslash$ [ a^2+b^2 $\backslash$ ] untuk menghasilkan notasi yang rata tengah berikut \[a^2+b^2\]


Pangkat dan Subscript


a^2, b_5, 2011^{2011}, y_{20}


$a^2,b_5,2011^{2011},y_{20}$


 


 


Relasi dan Himpunan


\leq,\geq,\cap,\cup,\subseteq


$\leq,\geq,\cap,\cup,\subseteq$


\bigcap,\bigcup,\sum,\prod


$\bigcap,\bigcup,\sum,\prod$


 


 


 


Akar, pecahan


\frac{a}{b}, \sqrt[n]{x}


$\frac{a}{b},\sqrt[n]{x}$


 


 


Alphabet Yunani


\alpha,\beta,\gamma,\delta ,\epsilon,\varepsilon, \pi,\phi,\varphi


$\alpha,\beta,\gamma,\delta ,\epsilon,\varepsilon, \pi,\phi,\varphi$


 


 


Multiline Equation (dibuat rata mengikuti tanda & )


\begin{align*}


a+b+c+&d+e+f+g+h\\


&i+j+k+l+m+n\\


&=o+p+q+r


\end{align*}


$\begin{align*}a+b+c+&d+e+f+g+h\\&i+j+k+l+m+n\\&=o+p+q+r\end{align*}$


 


Bisa juga menggunakan eqnarray


\begin{eqnarray*}a+b+c+d &=& e+f+g+h\\


&=& i+j+k+l\\


&=&m+n+o+p


\end{eqnarray*}


Hasil tampilannya:


$\begin{eqnarray*}a+b+c+d &=& e+f+g+h\\ &=& i+j+k+l\\&=&m+n+o+p\end{eqnarray*}$


 


 


Penulisan Matriks


\begin{pmatrix} a&b&c&d\\


e&f&g&h\\


i&j&k&l


\end{pmatrix}


Hasil tampilannya:


$\begin{pmatrix} a&b&c&d\\e&f&g&h\\i&j&k&l\end{pmatrix}$


 


 


 


Penulisan Notasi Trigonometri dan Logaritma


$\sin x$ ditulis \sin x.


$\cos x$ ditulis \cos x.


$\tan x$ ditulis \tan x.


$\sec x$ ditulis \sec x.


$\csc x$ ditulis \csc x.


$\cot x$ ditulis \cot x.


$\arcsin x$ ditulis \arcsin x.


$\arccos x$ ditulis \arccos x.


$\arctan c$ ditulis \arctan x.


$\log x$ ditulis \log x.


$\ln x$ ditulis \ln x.


 


 


Himpunan Bilangan


\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{Z}


$\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{Z}$


 


 


Teori Bilangan/kombin


a\equiv b {\mod p}


$a\equiv b {\mod p}$


a\equiv b {\pmod n}


$a\equiv b {\pmod n}$


a\mid b  tapi a\nmid c


$a\mid b$ tapi $a\nmid c$


\lfloor \rfloor


$\lfloor x\rfloor$


\lceil \rceil


$\lceil y\rceil$


{n\choose k}


${n\choose k}$


Edited by Aleams Barra
  • Upvote 4

Share this post


Link to post
Share on other sites

ngetest latex 

hitunglah \sum_{k=0}^{100}\left \lfloor \frac{2^{100}}{2^{50}+2^{k}} \right \rfloor jika x bilangan real dan \left \lfloor x \right \rfloor fungsi tangga

Share this post


Link to post
Share on other sites

\sum_{k=0}^{100}\left \lfloor \frac{2^{100}}{2^{50}+2^{k}} \right \rfloor

Sebelum dan sesudahnya pakai tanda dollar.

$\$$\sum_{k=0}^{100}\left \lfloor \frac{2^{100}}{2^{50}+2^{k}} \right \rfloor $\$$ akan menghasilkan

$\sum_{k=0}^{100}\left \lfloor \frac{2^{100}}{2^{50}+2^{k}} \right \rfloor$

  • Upvote 2

Share this post


Link to post
Share on other sites

sebentar pak 

$\sum_{k=0}^{100}\left \lfloor \frac{2^{100}}{2^{50}+2^{k}} \right \rfloor $

 

pak knp kok gak bisa , kan aku sudah kasih $ nya pak, aku masih baru bgt klo latex, maaf ya pak hhe

 

 

eh keliatan sekarang ya hhe

Edited by DHDW

Share this post


Link to post
Share on other sites

Tes lagi

$$

\begin {eqnarray*}

\frac {y_i}{\sqrt {y_{i}^2+1}} &\le& \sqrt {n. \sum_{i=1}^{n} \frac {y_{i}^2}{ y_{i}^2+1}} = \sqrt {n. \sum_{i=1}^{n} (1-\frac {1}{y_{i}^2+1})} \le \sqrt {n^2.(1- \frac {1}{\sqrt [n]{\prod_{i=1}^{n}(1+y_{i}^2)}})} \\

&\le& n. \sqrt {1- \frac {n}{n+ \sum_{i=1}^{n} y_i^2}} \le n. \sqrt {1- \frac {n}{n+ \frac {(\sum_{i=1}^{n} y_i)^2 }{n} } } \le n. \sqrt {1- \frac {n^2}{n + \frac {4}{n}} }= \frac {2}{\sqrt {4+n^2}}

\end {eqnarray*}

$$

Edited by eddyhermanto

Share this post


Link to post
Share on other sites

Pakai sintaks \textif untuk italic, \textbf untuk bold, \underline untuk underline


 


$\textit{italic}  \textbf{bold}  \underline{underline}$

Edited by Overflow

Share this post


Link to post
Share on other sites

×