Jump to content

Leaderboard

The search index is currently processing. Leaderboard results may not be complete.

Popular Content

Showing content with the highest reputation since 06/14/2017 in all areas

  1. 2 points
    Tentukan nilai dari $\frac{3}{1!2!3!}+\frac{4}{2!3!4!}+...+\frac{2016}{2014!2015!2016!}$
  2. 1 point
  3. 1 point
    Diketahui \[S=1! \cdot 1 + 2! \cdot 2 + 3! \cdot 3 + ... + k! \cdot k\] dengan $k \in \mathbb{N}$. Buktikan bahwa sisa dari $\frac{S}{k+1}$ adalah $k$.
  4. 1 point
    Itu pakai \equiv, jadnya $\equiv$
  5. 1 point
    Di Indonesia lebih kurang ada sekitar 3500 institut dan universitas, beberapa sangat populer. Dapat dipastikan disetiap kampus terdapat ilmuwan (ahli) sains dan teknologi, tetapi mereka semua tidak pernah terhubung. Andaikata mereka dapat terhubung dan saling berdiskusi, tentu ide dan inovasi baru akan tercetuskan. Untuk mewujudkan itu semua, sebagai langkah awal saya mendirikan Coenocyte, Sosial Media Sains dan Teknologi dengan misi: Menghubungkan Ilmuwan dan Pemerhati Teknologi agar tercipta kehidupan yang lebih baik. Coenocyte adalah tempat saintis saling terhubung, dapat di akses melalui situs: http://bit.ly/coenocyte Terima kasih.
  6. 1 point
    1. Buktikan bahwa \[16 < \sum_{k=1}^{80} \frac{1}{\sqrt{k}} < 17\] 2. Diberikan $a,b,c$ dan $d$ merupakan solusi dari \[x^{2018}-11x+10=0\] Tentukan \[\sum_{n=1}^{2017} ((a^n-b^n)+(c^n+d^n))\] 3. Tentukan nilai dari \[\frac{1}{2} + \frac{1}{2+4} +\frac{1}{2+4+6}+...+\frac{1}{2+4+6+...+4034}\] 4. Tentukan nilai dari \[\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+...+\frac{2017}{2015!+2016!+2017!}\] 5. Tentukan nilai dari \[\sum_{k=1}^{2017} \frac{1}{(k+1)\sqrt{k} + k\sqrt{k+1}}\] 6. Tentukan nilai dari \[\sum_{k=1}^{2017} \frac{1}{\sqrt{k} + \frac{1}{\sqrt{k} + \frac{1}{...}}}\] 7. Buktikan jika $a > b > 0$ dan \[x=\frac{1+a+a^2+a^3+...+a^{n-1}}{1+a+a^2+a^3+...+a^n}\] \[y=\frac{1+b+b^2+b^3+...+b^{n-1}}{1+b+b^2+b^3+...+b^n}\] maka $x < y$. 8. Diberikan $a_n = \frac{n}{2017}$ untuk $n \in \mathbb{N}$. Tentukan nilai dari \[\sum_{k=1}^{2017} \frac{a_k^5}{1 + 5a_k^4 - 10a_k^3 + 10a_k^2 - 5a_k}\] 9. Diberikan fungsi $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}_0$ dimana $\mathbb{N}_0=\mathbb{N} \cup \{0\}$. Jika $f(m+1,n) = f(m,n) + m$ dan $f(m,n+1)=f(m,n) + n$ dimana $m,n \in \mathbb{N}$ serta $f(1,1)=0$, tentukan semua pasangan $(p,q)$ yang memenuhi $f(p,q)=2017$. 10.Diberikan $\triangle ABC$, ditarik garis lurus beruturut-turut dari titik $A,B,C$ dan memotong sisi dihadapannya di titik $F,D,E$ serta ketiga garis tersebut berpotongan di titik $G$. Jika panjang $DG=GF=GE$ dan $AG+BG+CG=43$, tentukan $AG \cdot BG \cdot CG$.
  7. 1 point
  8. 1 point
  9. 1 point
  10. 1 point
    Jika \(w = t^{2} - t \: \; tan \, s \) , \(t = x\) dan \(s = \pi x\), tentukan \(\frac{dw}{dx}\) ketika \(x= \frac{1}{4}\)
  11. 1 point
    Pada suatu papan catur berukuran $2017 \times n$, Ani dan Banu melakukan permainan. Pemain pertama memilih suatu persegi dan kemudian mewarnainya dengan warna merah. Pemain berikutnya memilih suatu persegi dari daerah yang belum diberi warna merah dan kemudian mewarnainya dengan warna merah. Persegi yang dipilih boleh sebarang ukuran namun harus tepat menutup sejumlah persegi satuan pada papan catur. Kemudian kedua pemain bergantian melakukan hal tersebut. Seorang pemain dikatakan menang, jika pemain berikutnya tidak bisa lagi melanjutkan permainan. Jika Ani mendapat giliran pertama, tentukan semua nilai $n \geq 2017$ sehingga Ani mempunyai strategi untuk memenangkan permainan.
  12. 1 point
    Misalkan $X$ adalah himpunan bilangan real positif takkosong dengan properti sebagai berikut: untuk setiap $p,q,r\in X$, $pq+qr+rp$ adalah bilangan rasional. Buktikan bahwa $\frac{p}{q}$ adalah bilangan rasional untuk setiap $p,q\in X$.
  13. 1 point
    Kasus 1 : $pq, qr\ dan\ rp$ rasional, jelas bahwa $\frac{pr}{rq}$ juga rasional, sehingga $\frac{pr}{rq}=\frac{p}{q}$ juga rasional Kasus 2 : jika salah satu dari $pq, qr\ dan\ rp$ irasional, rasional + rasional + irasional jelas akan menghasilkan irasional, maka tidak dapat dibentuk $pq + qr + rp$ bilangan rasional Kasus 3 : jika dua diantara $pq,qr\ dan\ rp$ irasional, rasional + irasional + irasional, maka jumlah dari kedua bilangan irasional harus menghasilkan bilangan rasional, misalkan bilangan irasional pertama = $x$ dan bilangan irasional kedua = $y$, maka $x + y =\frac{a}{b}$, haruslah ada bilangan $b$ sehingga $b(x+y)=a$, dapat dilihat jika $x+y$ tidak sama dengan 0, maka $a$ tidak rasional, sehingga $x+y$ bernilai 0 atau $x=-y$, sedangkan jika $x$ merupakan jumlah bilangan rasional dan irasional dengan $x=m+n$, $m$ rasional dan $n$ irasional, $x+y=m+n+y=\frac{a}{b}$, dengan demikian haruslah $n=-y$, tanpa mengurangi keumuman, jika $pq\ dan\ qr$ merupakan bilangan irasional dan $rp$ bilangan rasional, sehingga $pq=-qr$, maka $p=-r$, dengan $pr=-r^2$, suatu kontradiksi karena $p,q,r$ merupakan anggota bilangan real positif maka $pq,qr\ dan\ rp$ harus benilai positif, jika $pq=x+y$, dengan $x$ rasional dan $y$ irasional, maka $qr=-y$, juga merupakan suatu kontradiksi karena $qr$ haruslah positif. Kasus 4 : jika $pq,qr\ dan\ rp$ irasional, irasional + irasional + irasional, maka akan menghasilkan bilangan irasional, sehingga tidak dapat dibentuk $pq+rq+rp$ bilangan rasional Jadi, $pq,qr\ dan\ rp$ haruslah rasional, sehingga $\frac{pr}{rq}=\frac{p}{q}$ juga rasional, untuk setiap $p,q\in X$ $$CMIIW$$
  14. 1 point
    Himpunan $\{ \sqrt{2},2\sqrt{2},3\sqrt{2} \}$ memenuhi persyaratan di soal, tapi semua elemennya irrasional
  15. 1 point
    p, q, dan r merupakann bilangan real. pq + qr + rp adalah bilangan rasional. Kemungkinan pertama pasti p, atau q, atau r merupakan bilangan rasional. Kemungkinan kedua p, q, dan r adalah bilangan rasional. Jadi, terbukti bahwa \frac{p}{q} adalah bilangan rasional.
  16. 1 point
    Misalkan a dan b bilangan real positif berbeda sehingga a+$\sqrt[]{ab} $ dan b+$\sqrt[]{ab} $ merupakan bilangan rasional. Buktikan bahwa a dan b merupakan bilangan rasional
  17. 1 point
    Misal sebuah lingkaran dengan pusat O. jarak tali busur AB ke O = 5 sementara jarak AC ke O = 5Ö2. Dari gambar dapat disimpulkan kalau AC = 2 kali jarak O ke tali busur AB dan AB =2 kali jarak O ke tali busur AC. SEHINGGA. BC^2= AC^2+AB^2=(2.5)^2 + (2.5Ö2)^2 =100+200 =300 Jadi panjang kuadrat BC=300 solusi osk mtk 2017 no 4.docx
  18. 1 point
    Coba jawab: Bila ada kesalahan mohon dikoreksi.
×